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Abstract—Cloud-based serverless platforms offer an efficient
solution for deploying Deep Neural Networks (DNNs). These plat-
forms handle the complex infrastructure provisioning tasks, scale
dynamically, and charge developers only for the actual runtime of
the inference requests. Recent research suggests that partitioning
a large DNN into smaller, parallelizable submodels deployed in
separate serverless functions can minimize end-to-end inference
latency. This partitioned design requires sharing intermediate
tensors among the coordinated serverless functions. While the
current state-of-the-art system achieves this by encoding the
tensor information in the payload of a REST API endpoint, our
study demonstrates that using a remote object storage system for
tensors exceeding a specific size threshold can facilitate faster
sharing. Therefore, we propose a hybrid inter-function tensor
sharing strategy based on tensor size to further decrease the
end-to-end latency in partitioned DNN models. Our experimental
results indicate that implementing this hybrid strategy can reduce
latency by up to 17.3%.

Index Terms—Serverless computing, Artificial neural net-
works, Tensors, Object oriented databases

I. INTRODUCTION

Machine learning models are growing increasingly im-
portant in software systems across the globe. Among the
many varieties of models in existence, Deep Neural Networks
(DNNs) have become especially popular, seeing as they have
impressively high prediction accuracy and can be used for a
wide variety of applications [16].

The ability to minimize inference latency—the duration
of time between querying a trained model and receiving its
prediction response—can be supremely valuable for many
applications. Given that representatives from Microsoft and
Google famously presented in 2009 that artificially introducing
latencies in their web systems caused a significant decrease in
revenue [3], it is important for any company or organization
deploying machine learning models in cloud systems to keep
latency as a primary consideration.

Machine learning model inferencing typically requires ad-
vanced hardware and a significant amount of memory. It
should be no surprise, then, that traditionally the primary
means to serve trained machine learning models in a cloud

environment has been by using virtual machines (VMs), and
there is ongoing research to improve the efficacy of VMs for
model serving [7] [5] [17] [21] [25].

Still, an attractive alternative to VMs for deploying machine
learning models is by leveraging serverless architectures. They
offer numerous benefits for customers, such as handling com-
plex infrastructure provisioning tasks and scaling dynamically
to different request volumes, all while only charging for the
actual runtime of the inference requests. Research from 2018
showed that even these comparatively larger DNN models can
be deployed for inferencing using serverless technology [8],
and it has continued to be an active area of research.

The most obvious approach for deploying a trained DNN
model with a serverless platform is to use just one server-
less function. This method minimizes complexity; when an
inference request is received from a user by the serverless
platform, it invokes the single function and returns the eventual
result to the user. Some promising research with this design
has involved batching multiple inference requests together (as
opposed to processing each request separately) to reduce both
latency and cost [2] [1].

Nevertheless, some DNN models are sufficiently large that
they do not fit into a single serverless function, even though
impressive research has gone into compressing the size of
DNNs [6]. For some specific applications, researchers have
been able to circumvent the issue by simply removing un-
needed components of large packages like TensorFlow [4]
or PyTorch [19]. While these approaches worked well for
their particular applications, a more general solution is desired,
especially as DNNs continue to grow in size.

With this in mind, we are particularly drawn to other
research that focuses on partitioning large models into smaller
submodels, where each submodel is ensured to be sufficiently
small that it can comfortably fit within a single serverless
function. While this approach is appealing, it comes with
the formidable challenge that tensor information must now be
shared between these functions, breaking the typical paradigm
of serverless functions being independent.



Per the results of a recent survey from 2023 [22], there are
two notable systems that employ a partitioning approach. The
first is AMPS-Inf [9], which partitions the trained model into
functions that run sequentially. The other is Gillis [24], which
uses a master-worker paradigm that allows groups of worker
functions to run in parallel. As mentioned above, there is great
value in reducing end-to-end inference latency, and the authors
of both systems reported latency measurements for several
DNN models that had been partitioned and deployed by their
respective systems. They only tested one model in common,
namely ResNet50, and Gillis showed the lower latency for
this model. While this is hardly a comprehensive comparison,
it stands to reason that the parallelism found in Gillis is an
advantage in processing inference requests with low latency,
so we focus our investigation here on the Gillis system.

Gillis shares intermediate tensors between the master and
worker functions by encoding the tensor information in the
payload of a REST API endpoint. As argued in [12], how-
ever, when it comes to transmitting data between serverless
functions, there are situations in which using remote-storage
(e.g., AWS S3) can be more efficient than direct-passing (e.g.,
a REST API endpoint). Prompted by this claim, we set out to
explore if using AWS S3 could be used to make Gillis even
faster.

In this work, we propose sharing intermediate tensors be-
tween the serverless functions of a partitioned DNN using
a REST API endpoint when the tensors are smaller than a
certain size threshold and using AWS S3 when the tensors
are as large or larger than the threshold. Moreover, we show
that this hybrid tensor sharing strategy can further decrease the
end-to-end inference latency compared to the original method
used in the Gillis system. The primary challenges with this
design are: determining the tensor size at which AWS S3
becomes preferable to the REST API approach, ascertaining
whether tensors above this threshold are actually shared in
real world partitioned DNNs, and implementing a configurable
version of the hybrid strategy within the open-source Gillis
system in order to test its efficacy.

This hybrid tensor sharing strategy was developed through
a series of four steps, where the first two steps motivated
the third and fourth. First, we performed an experiment to
measure the impact of tensor size on the latency for both the
REST API and AWS S3 sharing strategies. We found that
AWS S3 has comparatively lower latencies for large tensors.
Second, we profiled the size of all tensors shared between the
AWS Lambda functions for our test set of large, partitioned
DNN models. Notably only one model in our test set shared
tensors that were sufficiently large to obviously benefit from
being shared via AWS S3.

Third, bolstered by the results of these first two findings,
we implemented the hybrid sharing strategy into the Gillis
system with the following logic: if the size of a given tensor
to be shared is at or above the user-provided threshold, it is
sent using AWS S3; otherwise, it is sent using the original
REST API approach. Fourth and finally, we performed an
experiment in which we compared the end-to-end latencies

for the test models using three tensor sharing strategies:
exclusively via a REST API endpoint (as in the original Gillis
system), exclusively via AWS S3, and via our hybrid strategy
such that only the largest tensors for each model would be
sent using AWS S3. In line with our hypothesis, the S3-only
approach performed worst for all models, and the original
Gillis method performed best for most models. However, for
the model with the largest shared tensors as mentioned above,
we found that our hybrid strategy produced a 17.3% decrease
in median latency compared to the original Gillis method.

In summary, we claim any system that shares tensors be-
tween serverless functions ought to adjust its sharing strategy
based on tensor size, and we show a particular application
of our hybrid strategy successfully reduced the end-to-end
inference latency of a large partitioned DNN deployed on a
serverless platform. While we make no claims as to having
discovered the single most optimal method, we believe the
findings here are widely applicable and will help foment
additional research on the matter, ultimately improving DNN
inferencing for all.

II. BACKGROUND AND MOTIVATING EXPERIMENTS

As mentioned above, we view Gillis [24] as the state-
of-the-art system for partitioning and deploying large deep
neural networks to serverless functions in terms of achieving
low latency for inferencing requests, and in this work we
propose an improvement to its tensor sharing strategy to
further reduce latency. In this section specifically, we first
conduct a literature survey on related works. Then we provide
a high level overview of the Gillis design and explore how
Gillis shares tensors between its serverless functions. Finally
we describe our initial experiments that motivated our hybrid
tensor sharing strategy.

A. Related Works

Seeing as Gillis [24] was published in 2021 and serves as the
foundational paper for our work here, it is especially important
to address some additional related works.

Recently, researchers have sought to develop their own
serverless systems that are specifically tailored to machine
learning tasks. In 2022, researchers developed the INFless [23]
system which claimed to be the “first ML domain-specific
serverless platform.” Their focus was different than ours, as
their desire was to improve throughput for the serverless
system rather than end-to-end latency for the cloud customer.
Later in 2023, researchers built ShmFaas [11], a Kubernetes-
based serverless inferencing system specifically for DNN
models that demonstrated reduced memory usage, which again
is valuable but does not focus directly on the latency.

Other research has sought to address specific components of
inferencing systems for deep learning models using serverless
platforms, as opposed to developing entirely new systems. One
such work was produced by two authors from Meta [13],
but in contrast to our work, their focus was on developing
a hybrid scheduler for a serverless platform that could better
allocate resources. Similarly, a related work from the recent



SoCC ’23 conference called AsyFunc [15] also focuses on
reducing inefficiencies that arise under bursty workloads with
serverless inference for deep learning models rather than
latency specifically, as we do.

The creators of the All-You-Can-Inference [14] system at-
tempt to aid developers of DNN models who wish to utilize
a serverless platform by helping them navigate the many
configuration possibilities that exist in today’s systems, but
in contrast to our work, they do not consider partitioning or
parallelization within individual DNN models.

An important area of research that is directly related to
partitioning large DNN models is focused on mobile, edge,
and IoT environments. These environments can be even more
resource constrained than the serverless functions on which
we focus, but there is great overlap between the two situa-
tions. It is worth mentioning here a work from 2018 called
DeepThings [26] which focuses on parallelization in the IoT
space, and it is referenced by the authors of the Gillis system
itself. A more recent work called SplitPlace [20] utilizes
a partitioning strategy called semantic splitting that allows
for even more parallelization, but it comes at the cost of a
“considerable drop in inference accuracy,” to use their words.
Another mobile device related work [18] also develops a
novel parallel inference framework, this time for 6G mobile
communication systems.

While there is much to be learned from these more recent
systems, we are aware of no other works since AMPS-Inf
and Gillis that specifically address serving partitioned DNN
models using serverless platforms.

B. Gillis Design Overview

Gillis is an impressive Python system that takes as input
an ONNX-formatted file of a trained DNN model, partitions
the model using one of its proprietary partitioning algorithms
(we focus here on the one that minimizes latency), and then
deploys the inferencing system as an interconnected network
of serverless functions. Gillis can deploy to AWS Lambda,
Google Cloud Functions, and KNIX, but we focus exclusively
on AWS Lambda deployments. Also, the Gillis authors focus
their investigation on image classification models, so we do
as well for the sake of doing an apples-to-apples comparison.

The serverless functions are organized in a multistage
master-worker paradigm, an example of which is shown in
Figure 1. When an inferencing request is received at the master
function, the processing is performed in stages. Generally each
stage begins with the master function creating and sending
input tensors to four worker functions, which run in parallel.
After each worker has finished processing, it sends its output
tensor back to the master, where the master aggregates the
tensors from each worker function. Some partitioned models
may be comprised of only a single stage, while many are
made up of several stages. As a caveat, the algorithm at times
has all processing for a given stage take place at the master
function, and in such situations no tensors are shared between
any worker functions.

Fig. 1: Visualization of the shared tensors during an in-
ferencing request by WRN50-3 image classification model
that has been partitioned and deployed as AWS Lambda
functions using the Gillis system. The dashed boxes rep-
resent the master and eight worker functions. The blue
circles represent the input and output tensors for workers,
all of which require being shared, and each is drawn
to scale relative to the red circle in the bottom right
representing 800 KB. The numbers 0 through 3 represent
the stages that are initiated at the master function. Notice
no tensors are shared for stage 1, which indicates that all
computation for this stage is done locally by the master.

Essential to this design is that the master endures for the
whole duration of each inference request, coordinating the
beginning and end of each stage. By contrast, the worker
functions only endure for the duration of a single stage. Once
the final stage is complete, the master returns the inference
response. We have visualized this logic in Figure 2.

C. Tensor Sharing in Gillis

Gillis uses a direct-passing approach in that the input and
output tensors are directly shared between the master and
worker functions using a boto3 REST API endpoint. Again,
see Figure 1 for a detailed visualization of how the many
intermediate tensors move through each serverless function
while processing a single inference request.

Tensors are represented in a format equivalent to a mul-
tidimensional numpy array, and when a serverless function



Fig. 2: Overview of the inferencing request logic of the original Gillis system.

needs to send a tensor to another function, the function first
encodes the tensor into a base 64 bytes string. That encoded
string is included in the payload of the API call that is sent to
the receiving function. This process of encoding to a base 64
bytes string is beneficial because it makes the string shorter in
length compared to an equivalent encoding in base 10 or base
2, and a shorter string allows the payload to be delivered faster
to the receiving function. Once the encoded string reaches
its destination function, the function can then decode the
encoded string and convert it back into a multidimensional
array, resulting in a successful transmission of the tensor from
one serverless function to another.

D. Motivating Experiment: Pairwise Tensor Sharing Latencies
by Tensor Size

The guiding question for our first exploratory experiment
was the following: when sharing a tensor between two AWS
Lambda functions, for what size of tensor, if any, is it
faster to use AWS S3 compared to the REST API endpoint?
Conceptually, S3 has an advantage in that it does not need
to encode or decode the multidimensional array of tensor
data; the array can be saved directly to S3 by the sending
function and then read directly by the receiving function (see
Section III-D for details on how this is accomplished). That
being said, this method has a disadvantage in that there is
unavoidable overhead in writing to and reading from S3, even
for very small tensors.

To implement our experiment, we created four new AWS
Lambda functions. The first two functions were assigned to
share tensors using the original REST API endpoint approach,
and the remaining two functions were assigned to share tensors
using AWS S3. Outlined below is the method used to measure
the latency of sharing a tensor between the two functions of
each pair.

• At the first function F1 of the pair:
– receives a request to share a tensor of a particular

size
– marks the start time
– invokes the second function F2, forwarding the ten-

sor size
• After being invoked, F2:

– creates a tensor of the requested size in the form of
a multidimensional numpy array of random values

– calculates a checksum for the tensor
– if using the S3 sharing method, then saves the tensor

to S3; otherwise encodes the tensor to a base 64 bytes
string

– if using the S3 sharing method, then responds back
to F1 with the checksum and the S3 key of the
saved tensor; otherwise responds back to F1 with
the checksum and the encoded tensor string

• Back at F1 after receiving a response from F2:
– if using the S3 sharing method, then reads the tensor

from S3; otherwise decodes the encoded tensor data
– performs the same checksum operation on the local

tensor and compares it with the checksum received
from F2, ensuring (with very high probability) that
the received tensor is the same as the one that was
sent

– marks the end time and calculates the roundtrip
latency

– saves the following info: the tensor size, sharing
method, latency, and a TRUE/FALSE value for
whether the checksums matched

With this framework in place, we first tested the S3 sharing
method. This testing involved warming the two functions (to
avoid including latencies from cold starts), and then starting



with small tensors of about 8000 bytes, we made 10 repeat re-
quests before moving on to the next tensor size. We increased
in 8000 byte increments until stopping at approximately 1600
KB, spanning 200 different tensor sizes. Afterward, we re-
peated the same process for the REST API endpoint method.

Once all of the data was collected, we first confirmed
that the checksums matched for every tensor sharing event.
Next, we calculated the median latency across the 10 repeated
requests for each tensor size by sharing method, which is
summarized in Figure 3. The results were very clear that AWS
S3 is the more efficient sharing method for tensors of about
800 KB and larger. To be sure, the latency for the REST API
endpoint approach is much lower for small tensors, but as
tensors increase in size, latency increases at a much higher
rate compared to S3.

Fig. 3: Median latencies to send tensors of various sizes
between two AWS Lambda functions using either AWS S3
or a REST API endpoint. Tensors of about 800 KB and
larger can be shared faster via AWS S3.

E. Profiling Shared Tensors Sizes

Motivated by the previous experiment, the second task was
to measure the size of tensors that are actually exchanged by
our test set of large DNN models partitioned using the Gillis
system. After all, if all shared tensors are smaller than the
theoretical tipping point of 800 KB, then using AWS S3 would
likely be of little use in reducing end-to-end latency.

To perform this profiling, we added a custom feature to the
Gillis codebase such that each shared tensor would first be
saved to S3. While this idea is straightforward, the implemen-
tation involves several important details that are more fully
refined in our final hybrid strategy, so we leave that discussion
for the following section, specifically Section III-E.

The results of this profiling are shown in Figure 4. Most
notably, the WRN50-3 (Wide ResNet50 with 3-fold cross
validation) model shares tensors of about 1.7 MB, which is
well beyond the approximate theoretical tipping point of 800

KB. Also, the WRN34-4 model shares tensors right at the
threshold (800.1 KB, to be exact), and the remaining Wide
ResNet model WRN34-3 shares tensors just below threshold.
The remaining models, however, do not come close to the
threshold.

Fig. 4: Storage sizes in AWS S3 for tensors shared between
AWS Lambda functions of partitioned large DNNs de-
ployed with Gillis. Note: due to Gillis’ partitioning strategy,
at each stage of processing four workers receive tensors
of equal size from the master and then afterward share
four output tensors of equal size back to the master. See
Figure 1 for an example. With this in mind, each datapoint
in this figure actually represents four tensors shared by a
DNN model.

Consider reviewing Figure 1 which depicts the size of
tensors shared by the WRN50-3 model. As shown in the figure,
the model sends four tensors of about 1.7 MB in size between
the master and worker functions, as well as many other smaller
tensors.

III. SYSTEM DESIGN AND IMPLEMENTATION

In this section, we describe the design and implementation
of a hybrid inter-function tensor sharing strategy based on
tensor size to further decrease the end-to-end latency in
partitioned DNN models that have been deployed in AWS
Lambda functions using the Gillis system. Conceptually, the
strategy is simple: to share a given tensor, a Lambda function
uses a REST API endpoint when the tensor is smaller than
a user-provided size threshold and uses AWS S3 when the
tensors are as large or larger than the threshold. We outline
this design in Figure 5.

While the strategy is simple, implementing a working ver-
sion within the existing open-source Gillis system has several
subtle details, which we summarize here. First, we developed



Fig. 5: General system design of our hybrid tensor sharing
strategy that utilizes AWS S3 to share tensors above a
certain size threshold between the AWS Lambda functions.

a method to specify an AWS S3 bucket for sharing tensors
during the deployment process. Second, we added a means
by which the master and worker functions can be deployed
with additional AWS permissions to use that specified S3
bucket. Also, we created an S3 key naming scheme such that
each tensor file’s key is both unique and intelligible. Next, we
identified a highly efficient method for saving tensors to S3 and
subsequently reading tensors from S3. Finally, we brought it
all together by updating the Gillis codebase with configurable
hybrid tensor sharing logic.

A. Specify AWS S3 Bucket for Sharing Tensors

As a first step, we added a script into the beginning of
the deployment process that requires the user to specify the
AWS S3 bucket to use for any S3 tensor sharing. The script
queries the user’s existing S3 buckets, allowing the user to
either choose an existing bucket or let the script create a new
bucket for the user.

We chose to specify the S3 bucket during deployment rather
than allowing it to be configurable afterward for the sake of
speed and security. In terms of speed, we wanted all functions
to have local knowledge of exactly which bucket to use without
having to query that information from elsewhere. In terms of
security, we wanted each deployed function to have permission
to access only one specific S3 bucket, as we also mention
below.

B. Additional AWS S3 Permissions

When deploying a partitioned DNN to AWS Lambda func-
tions, the original Gillis system supplies the master function
with a non-default permissions policy that allows it to invoke
each of its worker functions. For our purposes, we needed
to provide additional permissions for all functions to be able
to read and write tensor data in the specified S3 bucket. The

master function must be able to write input tensors to S3, and
the worker functions must be able to read those input tensors
from S3. Afterward, each worker function must be able to
write its output function to S3, and the master function must
be able to read those outputs from S3.

The advantage of specifying a bucket name in the permis-
sion policy of each function is that it provides greater security
by ensuring the function cannot access any other S3 bucket,
whether accidentally or maliciously during unintended usage.

C. AWS S3 Key Naming Scheme for Tensors

Each object stored in AWS S3 is accessible via a unique
URI that begins with s3://my-bucket, where in this case
the placeholder bucket name is my-bucket. The remainder
of the URI is known as the S3 key. As such, we had to
develop a naming scheme for the S3 keys we use when reading
and writing tensors to our specified S3 bucket. We wanted
a scheme that would be unique for each tensor while also
encoding valuable information about that tensor.

Without uniqueness, if concurrent image classification re-
quests are made for different images, then the situation could
easily occur where a tensor from one request gets overwritten
by another request before the first request had time to read it,
thereby spoiling the inference result of the first request. That
being said, ensuring uniqueness by simply saving each tensor
with a key comprised of an unintelligible hash value would be
throwing away a lot of information about origin of the tensor.

With these points in mind, we use the following components
in the S3 key for each tensor, which taken together ensure
uniqueness while also preserving valuable details about the
origin of the function.

• deploymentName: name of the deployment, which
typically includes a description of the DNN model being
deployed

• ts: human readable timestamp of when the initial infer-
ence request was received at the master function (e.g.,
‘2023-11-03 17h05m06s UTC’)

• id: AWS-generated request id from when the initial
inference request was received at the master function

• stageNum: stage number within the inference request
processing

• funcName: name of the worker function
• filename: either ‘input.npy’ or ‘output.npy’ depending

on whether the tensor is an input to or output for the
worker function

D. Efficiently Sharing Tensors with AWS S3

To share a tensor between two AWS Lambda functions
using AWS S3, one function saves the tensor to S3, then the
other reads the tensor from S3, thereby completing the transfer.
Seeing as our goal is to minimize latency, ideally we would
like to use the fastest method for saving a tensor to S3 and
similarly use the fastest method for reading a tensor from S3.
We leave it as a future work to more rigorously identify these
optimal methods.



For our purposes, we are content to lower the bar slightly
from using the optimal methods to using highly efficient
methods. To that end, we choose to use the highly optimized
Python packages numpy and boto3 to construct our methods.

Tensors are stored internally in a format equivalent to a
multidimensional numpy array, so to save a tensor to S3, we
write the array to a buffer using the numpy.save method
and then save the buffer to S3 using the upload_fileobj
method from boto3’s S3.Client class. The process is
analogous for reading a tensor from S3: the saved tensor data is
written to a buffer using the download_fileobj method
from boto3’s S3.Client class and then converted back
into a multidimensional numpy array using the numpy.load
method.

E. Updating Gillis with Configurable Hybrid Tensor Sharing
Logic

With all of the aforementioned components in place, we
were ready to bring a configurable version of hybrid tensor
sharing logic to the Gillis system. We use the term config-
urable here to indicate that we wanted the user to be able
to provide a parameter to the inference request indicating the
specific tensor size in KB for which tensors of this size or
larger would be sent using AWS S3 and tensors smaller than
this size would be sent using the REST API endpoint. Even
though we had already found a supposed optimal threshold
of about 800 KB, for experimental purposes we wanted this
threshold to be configurable by the user.

Unfortunately, without major design changes to the server-
less function network structure, it is not feasible for AWS S3
to trigger either a worker function or the master function upon
the successful upload of a tensor because the master function
endures for the duration of the inference request and inherently
must wait by design. For this reason, the implementation we
used expands upon the concepts we established in our first
experiment described in Section II-D.

One important difference, however, is that in the first exper-
iment each pair of functions only used one sharing method,
but the master and worker functions we deploy via Gillis need
to be able to share via both methods. We accounted for this by
including additional information in the payloads of the REST
API communication exchanged between functions. In the case
of the master function invoking a worker function, the payload
the worker receives contains both the user-specified tensor
size threshold and a description indicating whether the worker
ought to expect an encoded bytes string in the payload (as in
the case of a REST API endpoint sharing method) or whether
it should expect to find an S3 key in the payload (as in the
case of the AWS S3 sharing method). Depending on how the
descriptor dictates, the worker can take the appropriate action
to acquire the input tensor.

After the worker function has performed its processing on
the input tensor to produce its output tensor, it is now ready to
send this output tensor back to the master function. To do so,
it first performs a simple calculation to determine if the output
tensor is above or below the tensor size threshold it received

from the master. Depending on the result, it performs the ap-
propriate operations for the corresponding sharing method and
likewise includes the appropriate information in the payload
of its response back to the master.

For the sake of clarity, we mention here that the method with
which the master function first shares an input tensor with a
worker function has no bearing on the method with which
the worker function must share the output back to the master;
the two sharing operations are completely independent. See
Figure 6 for a visualization of our hybrid tensor sharing logic.

IV. EXPERIMENT

After successfully implementing a hybrid tensor sharing
strategy within the Gillis system, we were finally ready to
perform an experiment to see if this method could improve
end-to-end inference latencies for any of our test set of DNN
models.

A. Experiment Design

Our test involved first warming a partitioned and deployed
DNN model to avoid cold starts. After the Lambda functions
for the model were warmed, we made 30 consecutive inference
requests for each of the following tensor sharing strategies:

• All tensors shared via the REST API endpoint (denoted
“REST Only”). This is equivalent to the original Gillis
method, and it was achieved by not providing any tensor
size threshold in the invocation request.

• All tensors shared via AWS S3 (denoted “S3 Only”).
This was achieved by providing 0 KB as the tensor size
threshold (since all sharable tensors would be at least 0
KB and therefore shared via AWS S3).

• Each model’s largest tensors shared via S3 but all smaller
tensors shared via the REST API endpoint (denoted
“Hybrid”). This was achieved by providing a tensor size
threshold that was smaller than its largest tensors but
larger than its second largest tensors.

After saving these 90 end-to-end latency and prediction
measurements for the model, we repeated the process for the
next model in our test set until we completed all models.

B. Results

After the results were collected for all models and all tensor
sharing strategies, we first confirmed that the prediction values
across all inference requests for a given model were the same.
Next, we calculated the median latency across the 30 requests
for a given model and tensor sharing strategy, and those
median latencies are summarized in Figure 7.

Generally speaking, the S3-only approach performed worst
for all models, and the latencies were especially high for
the two WRN34 models. Referencing back to a prior figure,
Figure 4, this relationship seems to be most closely tied to
size and number of tensors shared that are below the 800 KB
threshold.

Excluding the WRN34-4 and WRN50-3 models for a mo-
ment, comparing the hybrid sharing strategy and REST API



Fig. 6: Overview of the hybrid tensor sharing strategy logic implemented as an update with the Gillis system. Compare
this logic with that of the original Gillis described in Figure 2.

endpoint approach shows that the REST API endpoint per-
formed better, although the difference appears to be relatively
small. We remind the reader that the hybrid strategy used here
is such that only the largest tensors for each model were shared
via S3, while the remaining tensors are shared via a REST API
endpoint. So for the VGG and WRN models with many shared
tensors, for both strategies the majority of tensors are shared
via the REST API approach.

In line with our hypothesis, for the WRN50-3 model with
the largest shared tensors, the hybrid strategy produced a

17.3% reduction in median latency compared to the REST
API endpoint strategy in our experiment (1267.5 vs 1532.5
milliseconds, respectively), which is a non-trivial improve-
ment. We also performed the same comparison using mean
instead of median and found a 15.9% improvement for the
hybrid strategy compared to the REST API approach (1292.1
vs 1536.7 milliseconds, respectively). See Figure 8 for a plot
of all 90 latency data points for WRN50-3 (30 data points for
each of the three tensor sharing strategies).

Returning now to WRN34-4 model, we saw nearly identical



Fig. 7: Median end-to-end latencies using three tensor
sharing strategies across several large partitioned DNN
models.

Fig. 8: End-to-end latencies using three tensor sharing
strategies for the partitioned WRN50-3 DNN model. Me-
dians shown with dashed lines; means shown with dotted
lines.

results for the hybrid strategy and the REST API approach.
The medians were 2712.5 vs 2713.0 milliseconds, respectively,
and the means were 2724.5 vs 2717.4 milliseconds, respec-
tively. Recall that model’s largest shared tensors are 800.1 KB
in size, so these results provide good evidence that 800 KB is
a legitimate threshold.

C. Implications for Future Work

While the results of this experiment are very promising,
they also prompt further questions.

The models in our test set were comprised of the largest
publicly available image classification DNN models we could
successfully partition and deploy using the Gillis system.
However, many more models exist, so we would like to expand
our experiment to include even larger models and DNNs from
other model families.

As mentioned in Section III-D, we have not rigorously
determined whether our method is the optimal way to save
or read a tensor from AWS S3. The method we use here
is efficient, but if we could determine a faster method, it
would improve the end-to-end latencies. Furthermore, the
authors of the Astrea [10] system conducted a survey as
part of their work, and they found that other systems use
intercommunication tools like Redis, AWS DynamoDB, and
SQS, each of which may have their own advantages and
disadvantages.

There is also the question of cost as it pertains to this hybrid
strategy. While additional costs are incurred by reading and
writing tensors to AWS S3 instead of directly passing the
tensors via the REST API endpoint, additional savings are
gained by reducing latency in that the billable runtime of the
corresponding AWS Lambda functions is also reduced. We
leave it as a future work to determine the degree to which the
additional savings counteract the additional costs.

Finally, we speculate that in some situations inference
latency could be further reduced if DNN models were par-
titioned into fewer stages with larger shared tensors rather
than into more stages with smaller tensors, seeing as we have
demonstrated that large tensors can be efficiently shared via a
remote object storage system like AWS S3. While the focus
of our work here has been on improving serverless function
intercommunication, there would be great value in exploring
improvements to partitioning algorithms.

V. CONCLUSION

In conclusion, we propose a hybrid inter-function tensor
sharing strategy to reduce end-to-end latency for partitioned
deep neural networks deployed on serverless platforms. The
key idea is to include smaller tensors directly in the payload
and write larger tensors exceeding a configurable threshold to
remote object storage, thereby minimizing the amount of data
sent over the wire.

This strategy was motivated by our initial experiments,
which demonstrated that using remote object storage as the
main data transmission method had lower latencies for larger
tensors and that certain DNN models indeed exchange tensors



exceeding 800 KB in size. The strategy was implemented
on top of the Gillis system for deploying partitioned models
on AWS Lambda. An experiment with image classification
models demonstrated the hybrid approach decreases median
inference latency by 17.3% for WRN50-3, the model with the
largest shared tensors.

We believe this serves as an initial step toward optimizing
communication for partitioned models on serverless platforms,
particularly for very large DNN models. Exploring adjust-
ments to partitioning algorithms and evaluating cost implica-
tions remain as future work. In the end, our findings suggest
tensor size should influence the choice of sharing mechanism
used by all systems that share tensors between serverless
functions.
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